Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence
نویسندگان
چکیده
منابع مشابه
Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence
The Ra and Pr number scaling of the Nusselt number Nu, the Reynolds number Re, the temperature fluctuations, and the kinetic and thermal dissipation rates is studied for snumericald homogeneous Rayleigh–Bénard turbulence, i.e., Rayleigh–Bénard turbulence with periodic boundary conditions in all directions and a volume forcing of the temperature field by a mean gradient. This system serves as mo...
متن کاملThe Turbulent Magnetic Prandtl Number of MHD Turbulence in Disks
The magnetic Prandtl number PrM is the ratio of viscosity to resistivity. In astrophysical disks the diffusion of angular momentum (viscosity) and magnetic fields (resistivity) are controlled by turbulence. Phenomenological models of the evolution of large scale poloidal magnetic fields in disks suggest that the turbulent magnetic Prandtl number PrM,T controls the rate of escape of vertical fie...
متن کاملOn the turbulent Prandtl number in homogeneous stably stratified turbulence
In this paper, we derive a general relationship for the turbulent Prandtl number Pr t for homogeneous stably stratified turbulence from the turbulent kinetic energy and scalar variance equations. A formulation for the turbulent Prandtl number, Pr t , is developed in terms of a mixing length scale LM and an overturning length scale LE , the ratio of the mechanical (turbulent kinetic energy) deca...
متن کاملStructure of MHD turbulence in large-Prandtl-number plasmas
In turbulent MHD systems where the ratio of fluid viscosity and magnetic diffusivity (the magnetic Prandtl number, Pr = ν/η) is very large, there exists a broad range of subviscous scales available to magnetic fluctuations, but not to hydrodynamic ones. This MHD regime is encountered, for example, in such astrophysical environments as the interstellar medium and protogalactic plasmas, where Pr ...
متن کاملPrandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
Experimental and numerical data for the heat transfer as a function of the Rayleigh, Prandtl, and Rossby numbers in turbulent rotating Rayleigh-Bénard convection are presented. For relatively small Ra approximately 10(8) and large Pr modest rotation can enhance the heat transfer by up to 30%. At larger Ra there is less heat-transfer enhancement, and at small Pr less, similar 0.7 there is no hea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics of Fluids
سال: 2005
ISSN: 1070-6631,1089-7666
DOI: 10.1063/1.1884165